

The uncompromising code formatter

By using Black, you agree to cease control over minutiae of
hand-formatting. In return, Black gives you speed, determinism, and
freedom from pycodestyle nagging about formatting. You will save time
and mental energy for more important matters.

Black makes code review faster by producing the smallest diffs
possible. Blackened code looks the same regardless of the project
you’re reading. Formatting becomes transparent after a while and you
can focus on the content instead.

Note

Black is an early pre-release.

Testimonials

Dusty Phillips, writer [https://smile.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=dusty+phillips]:

Black is opinionated so you don’t have to be.

Hynek Schlawack, creator of attrs [http://www.attrs.org/], core
developer of Twisted and CPython:

An auto-formatter that doesn’t suck is all I want for Xmas!

Carl Meyer, Django [https://www.djangoproject.com/] core developer:

At least the name is good.

Kenneth Reitz, creator of requests [http://python-requests.org/]
and pipenv [https://docs.pipenv.org/]:

This vastly improves the formatting of our code. Thanks a ton!

Contents

	Installation and Usage
	Installation

	Usage

	Command line options

	NOTE: This is an early pre-release

	The Black code style
	How Black wraps lines

	Line length

	Empty lines

	Trailing commas

	Editor integration
	Emacs

	Vim

	Visual Studio Code

	Other editors

	Contributing to Black
	Bird’s eye view

	Technicalities

	Hygiene

	Finally

	Change Log
	18.3a5 (unreleased)

	18.3a4

	18.3a3

	18.3a2

	18.3a1

	18.3a0

	Developer reference
	Black classes

	Black functions

	Black exceptions

	Authors

Indices and tables

	Index

	Module Index

	Search Page

Installation and Usage

Installation

Black can be installed by running pip install black. It requires
Python 3.6.0+ to run but you can reformat Python 2 code with it, too.

Usage

To get started right away with sensible defaults:

black {source_file_or_directory}

Command line options

Black doesn’t provide many options. You can list them by running
black --help:

black [OPTIONS] [SRC]...

Options:
 -l, --line-length INTEGER Where to wrap around. [default: 88]
 --check Don't write back the files, just return the
 status. Return code 0 means nothing would
 change. Return code 1 means some files would be
 reformatted. Return code 123 means there was an
 internal error.
 --fast / --safe If --fast given, skip temporary sanity checks.
 [default: --safe]
 --version Show the version and exit.
 --help Show this message and exit.

Black is a well-behaved Unix-style command-line tool:

	it does nothing if no sources are passed to it;

	it will read from standard input and write to standard output if -
is used as the filename;

	it only outputs messages to users on standard error;

	exits with code 0 unless an internal error occured (or --check was
used).

NOTE: This is an early pre-release

Black can already successfully format itself and the standard library.
It also sports a decent test suite. However, it is still very new.
Things will probably be wonky for a while. This is made explicit by the
“Alpha” trove classifier, as well as by the “a” in the version number.
What this means for you is that until the formatter becomes stable,
you should expect some formatting to change in the future.

Also, as a temporary safety measure, Black will check that the
reformatted code still produces a valid AST that is equivalent to the
original. This slows it down. If you’re feeling confident, use
--fast.

The Black code style

Black reformats entire files in place. It is not configurable. It
doesn’t take previous formatting into account. It doesn’t reformat
blocks that start with # fmt: off and end with # fmt: on. It also
recognizes YAPF [https://github.com/google/yapf]’s block comments to
the same effect, as a courtesy for straddling code.

How Black wraps lines

Black ignores previous formatting and applies uniform horizontal
and vertical whitespace to your code. The rules for horizontal
whitespace are pretty obvious and can be summarized as: do whatever
makes pycodestyle happy. The coding style used by Black can be
viewed as a strict subset of PEP 8.

As for vertical whitespace, Black tries to render one full expression
or simple statement per line. If this fits the allotted line length,
great.

in:

l = [1,
 2,
 3,
]

out:

l = [1, 2, 3]

If not, Black will look at the contents of the first outer matching
brackets and put that in a separate indented line.

in:

l = [[n for n in list_bosses()], [n for n in list_employees()]]

out:

l = [
 [n for n in list_bosses()], [n for n in list_employees()]
]

If that still doesn’t fit the bill, it will decompose the internal
expression further using the same rule, indenting matching brackets
every time. If the contents of the matching brackets pair are
comma-separated (like an argument list, or a dict literal, and so on)
then Black will first try to keep them on the same line with the
matching brackets. If that doesn’t work, it will put all of them in
separate lines.

in:

def very_important_function(template: str, *variables, file: os.PathLike, debug: bool = False):
 """Applies `variables` to the `template` and writes to `file`."""
 with open(file, 'w') as f:
 ...

out:

def very_important_function(
 template: str,
 *variables,
 file: os.PathLike,
 debug: bool = False,
):
 """Applies `variables` to the `template` and writes to `file`."""
 with open(file, 'w') as f:
 ...

You might have noticed that closing brackets are always dedented and
that a trailing comma is always added. Such formatting produces smaller
diffs; when you add or remove an element, it’s always just one line.
Also, having the closing bracket dedented provides a clear delimiter
between two distinct sections of the code that otherwise share the same
indentation level (like the arguments list and the docstring in the
example above).

Line length

You probably noticed the peculiar default line length. Black defaults
to 88 characters per line, which happens to be 10% over 80. This number
was found to produce significantly shorter files than sticking with 80
(the most popular), or even 79 (used by the standard library). In
general, 90-ish seems like the wise choice [https://youtu.be/wf-BqAjZb8M?t=260].

If you’re paid by the line of code you write, you can pass
--line-length with a lower number. Black will try to respect that.
However, sometimes it won’t be able to without breaking other rules. In
those rare cases, auto-formatted code will exceed your allotted limit.

You can also increase it, but remember that people with sight disabilities
find it harder to work with line lengths exceeding 100 characters.
It also adversely affects side-by-side diff review on typical screen
resolutions. Long lines also make it harder to present code neatly
in documentation or talk slides.

If you’re using Flake8, you can bump max-line-length to 88 and forget
about it. Alternatively, use Bugbear [https://github.com/PyCQA/flake8-bugbear]’s
B950 warning instead of E501 and keep the max line length at 80 which
you are probably already using. You’d do it like this:

[flake8]
max-line-length = 80
...
select = C,E,F,W,B,B950
ignore = E501

You’ll find Black’s own .flake8 config file is configured like this.
If you’re curious about the reasoning behind B950, Bugbear’s documentation
explains it. The tl;dr is “it’s like highway speed limits, we won’t
bother you if you overdo it by a few km/h”.

Empty lines

Black avoids spurious vertical whitespace. This is in the spirit of
PEP 8 which says that in-function vertical whitespace should only be
used sparingly. One exception is control flow statements: Black will
always emit an extra empty line after return, raise, break,
continue, and yield. This is to make changes in control flow
more prominent to readers of your code.

Black will allow single empty lines inside functions, and single and
double empty lines on module level left by the original editors, except
when they’re within parenthesized expressions. Since such expressions
are always reformatted to fit minimal space, this whitespace is lost.

It will also insert proper spacing before and after function definitions.
It’s one line before and after inner functions and two lines before and
after module-level functions. Black will put those empty lines also
between the function definition and any standalone comments that
immediately precede the given function. If you want to comment on the
entire function, use a docstring or put a leading comment in the function
body.

Trailing commas

Black will add trailing commas to expressions that are split
by comma where each element is on its own line. This includes function
signatures.

Unnecessary trailing commas are removed if an expression fits in one
line. This makes it 1% more likely that your line won’t exceed the
allotted line length limit. Moreover, in this scenario, if you added
another argument to your call, you’d probably fit it in the same line
anyway. That doesn’t make diffs any larger.

One exception to removing trailing commas is tuple expressions with
just one element. In this case Black won’t touch the single trailing
comma as this would unexpectedly change the underlying data type. Note
that this is also the case when commas are used while indexing. This is
a tuple in disguise: numpy_array[3,].

One exception to adding trailing commas is function signatures
containing *, *args, or **kwargs. In this case a trailing comma
is only safe to use on Python 3.6. Black will detect if your file is
already 3.6+ only and use trailing commas in this situation. If you
wonder how it knows, it looks for f-strings and existing use of trailing
commas in function signatures that have stars in them. In other words,
if you’d like a trailing comma in this situation and Black didn’t
recognize it was safe to do so, put it there manually and Black will
keep it.

Editor integration

Emacs

Use proofit404/blacken [https://github.com/proofit404/blacken].

Vim

Commands and shortcuts:

	,= or :Black to format the entire file (ranges not supported);

	:BlackUpgrade to upgrade Black inside the virtualenv;

	:BlackVersion to get the current version of Black inside the
virtualenv.

Configuration:

	g:black_fast (defaults to 0)

	g:black_linelength (defaults to 88)

	g:black_virtualenv (defaults to ~/.vim/black)

To install, copy the plugin from vim/plugin/black.vim [https://github.com/ambv/black/tree/master/vim/plugin/black.vim].
Let me know if this requires any changes to work with Vim 8’s builtin
packadd, or Pathogen, or Vundle, and so on.

This plugin requires Vim 7.0+ built with Python 3.6+ support. It
needs Python 3.6 to be able to run Black inside the Vim process which
is much faster than calling an external command.

On first run, the plugin creates its own virtualenv using the right
Python version and automatically installs Black. You can upgrade it later
by calling :BlackUpgrade and restarting Vim.

If you need to do anything special to make your virtualenv work and
install Black (for example you want to run a version from master), just
create a virtualenv manually and point g:black_virtualenv to it.
The plugin will use it.

How to get Vim with Python 3.6?
On Ubuntu 17.10 Vim comes with Python 3.6 by default.
On macOS with HomeBrew run: brew install vim --with-python3.
When building Vim from source, use:
./configure --enable-python3interp=yes. There’s many guides online how
to do this.

Visual Studio Code

Use joslarson.black-vscode [https://marketplace.visualstudio.com/items?itemName=joslarson.black-vscode].

Other editors

Atom/Nuclide integration is planned by the author, others will
require external contributions.

Patches welcome! ✨ 🍰 ✨

Any tool that can pipe code through Black using its stdio mode (just
use - as the file name [http://www.tldp.org/LDP/abs/html/special-chars.html#DASHREF2]).
The formatted code will be returned on stdout (unless --check was
passed). Black will still emit messages on stderr but that shouldn’t
affect your use case.

This can be used for example with PyCharm’s File Watchers [https://www.jetbrains.com/help/pycharm/file-watchers.html].

Contributing to Black

Welcome! Happy to see you willing to make the project better. Have you
read the entire user documentation [http://black.readthedocs.io/en/latest/]
yet?

Bird’s eye view

In terms of inspiration, Black is about as configurable as gofmt and
rustfmt are. This is deliberate.

Bug reports and fixes are always welcome! Please follow the issue
template on GitHub for best results.

Before you suggest a new feature or configuration knob, ask yourself why
you want it. If it enables better integration with some workflow, fixes
an inconsistency, speeds things up, and so on - go for it! On the other
hand, if your answer is “because I don’t like a particular formatting”
then you’re not ready to embrace Black yet. Such changes are unlikely
to get accepted. You can still try but prepare to be disappointed.

Technicalities

Development on the latest version of Python is preferred. As of this
writing it’s 3.6.4. You can use any operating system. I am using macOS
myself and CentOS at work.

Install all development dependencies using:

$ pipenv install --dev

If you haven’t used pipenv before but are comfortable with virtualenvs,
just run pip install pipenv in the virtualenv you’re already using and
invoke the command above from the cloned Black repo. It will do the
correct thing.

Before submitting pull requests, run tests with:

$ python setup.py test

Also run mypy and flake8 on black.py and test_black.py. Travis will
run all that for you but if you left any errors here, it will be quicker
and less embarrassing to fix them locally ;-)

Hygiene

If you’re fixing a bug, add a test. Run it first to confirm it fails,
then fix the bug, run it again to confirm it’s really fixed.

If adding a new feature, add a test. In fact, always add a test. But
wait, before adding any large feature, first open an issue for us to
discuss the idea first.

Finally

Thanks again for your interest in improving the project! You’re taking
action when most people decide to sit and watch.

Change Log

18.3a5 (unreleased)

	fixed 18.3a4 regression: don’t crash and burn on empty lines with
trailing whitespace (#80)

	only allow up to two empty lines on module level and only single empty
lines within functions (#74)

18.3a4

	# fmt: off and # fmt: on are implemented (#5)

	automatic detection of deprecated Python 2 forms of print statements
and exec statements in the formatted file (#49)

	use proper spaces for complex expressions in default values of typed
function arguments (#60)

	only return exit code 1 when –check is used (#50)

	don’t remove single trailing commas from square bracket indexing
(#59)

	don’t omit whitespace if the previous factor leaf wasn’t a math
operator (#55)

	omit extra space in kwarg unpacking if it’s the first argument (#46)

	omit extra space in Sphinx auto-attribute comments [http://www.sphinx-doc.org/en/stable/ext/autodoc.html#directive-autoattribute]
(#68)

18.3a3

	don’t remove single empty lines outside of bracketed expressions
(#19)

	added ability to pipe formatting from stdin to stdin (#25)

	restored ability to format code with legacy usage of async as
a name (#20, #42)

	even better handling of numpy-style array indexing (#33, again)

18.3a2

	changed positioning of binary operators to occur at beginning of lines
instead of at the end, following a recent change to PEP8 [https://github.com/python/peps/commit/c59c4376ad233a62ca4b3a6060c81368bd21e85b]
(#21)

	ignore empty bracket pairs while splitting. This avoids very weirdly
looking formattings (#34, #35)

	remove a trailing comma if there is a single argument to a call

	if top level functions were separated by a comment, don’t put four
empty lines after the upper function

	fixed unstable formatting of newlines with imports

	fixed unintentional folding of post scriptum standalone comments
into last statement if it was a simple statement (#18, #28)

	fixed missing space in numpy-style array indexing (#33)

	fixed spurious space after star-based unary expressions (#31)

18.3a1

	added --check

	only put trailing commas in function signatures and calls if it’s
safe to do so. If the file is Python 3.6+ it’s always safe, otherwise
only safe if there are no *args or **kwargs used in the signature
or call. (#8)

	fixed invalid spacing of dots in relative imports (#6, #13)

	fixed invalid splitting after comma on unpacked variables in for-loops
(#23)

	fixed spurious space in parenthesized set expressions (#7)

	fixed spurious space after opening parentheses and in default
arguments (#14, #17)

	fixed spurious space after unary operators when the operand was
a complex expression (#15)

18.3a0

	first published version, Happy 🍰 Day 2018!

	alpha quality

	date-versioned (see: https://calver.org/)

Developer reference

Contents are subject to change.

	Black classes
	BracketTracker

	EmptyLineTracker

	Line

	LineGenerator

	Report

	UnformattedLines

	Visitor

	Black functions
	Assertions and checks

	Formatting

	File operations

	Parsing

	Split functions

	Utilities

	Black exceptions

Black classes

Contents are subject to change.

BracketTracker

EmptyLineTracker

Line

LineGenerator

Report

UnformattedLines

Visitor

Black functions

Contents are subject to change.

Assertions and checks

Formatting

File operations

Parsing

Split functions

Utilities

	
black.DebugVisitor.show(code: str) → None

	Pretty-print the lib2to3 AST of a given string of code.

Black exceptions

Contents are subject to change.

Authors

Glued together by Łukasz Langa.

Maintained with Carol Willing
and Carl Meyer.

Multiple contributions by:

	Artem Malyshev

	Daniel M. Capella

	Eli Treuherz

	Hugo van Kemenade

	Mika⠙

	Osaetin Daniel

Index

 B

B

 	
 	black.DebugVisitor.show() (in module black)

Contributing to Black

In terms of inspiration, Black is about as configurable as gofmt and
rustfmt are. This is deliberate.

Bug reports and fixes are always welcome! However, before you suggest a
new feature or configuration knob, ask yourself why you want it. If it
enables better integration with some workflow, fixes an inconsistency,
speeds things up, and so on - go for it! On the other hand, if your
answer is “because I don’t like a particular formatting” then you’re not
ready to embrace Black yet. Such changes are unlikely to get accepted.
You can still try but prepare to be disappointed.

More details can be found in CONTRIBUTING.

License

MIT

Show your style

Use the badge in your project’s README.md:

[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

Looks like this: [image: Code style: black] [https://github.com/ambv/black]

Testimonials

Dusty Phillips, writer [https://smile.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=dusty+phillips]:

Black is opinionated so you don’t have to be.

Hynek Schlawack, creator of attrs [http://www.attrs.org/], core
developer of Twisted and CPython:

An auto-formatter that doesn’t suck is all I want for Xmas!

Carl Meyer, Django [https://www.djangoproject.com/] core developer:

At least the name is good.

Kenneth Reitz, creator of requests [http://python-requests.org/]
and pipenv [https://docs.pipenv.org/]:

This vastly improves the formatting of our code. Thanks a ton!

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 The uncompromising code formatter

 		
 Installation and Usage

 		
 Installation

 		
 Usage

 		
 Command line options

 		
 NOTE: This is an early pre-release

 		
 The Black code style

 		
 How Black wraps lines

 		
 Line length

 		
 Empty lines

 		
 Trailing commas

 		
 Editor integration

 		
 Emacs

 		
 Vim

 		
 Visual Studio Code

 		
 Other editors

 		
 Contributing to Black

 		
 Bird’s eye view

 		
 Technicalities

 		
 Hygiene

 		
 Finally

 		
 Change Log

 		
 18.3a5 (unreleased)

 		
 18.3a4

 		
 18.3a3

 		
 18.3a2

 		
 18.3a1

 		
 18.3a0

 		
 Developer reference

 		
 Black classes

 		
 BracketTracker

 		
 EmptyLineTracker

 		
 Line

 		
 LineGenerator

 		
 Report

 		
 UnformattedLines

 		
 Visitor

 		
 Black functions

 		
 Assertions and checks

 		
 Formatting

 		
 File operations

 		
 Parsing

 		
 Split functions

 		
 Utilities

 		
 Black exceptions

 		
 Authors

_static/logo2-readme.png

_static/logo2.png

_static/file.png

_static/minus.png

_static/plus.png

